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Theory and measurement of spatial coherence of synchrotron radiation beams are briefly reviewed.
Emphasis is given to simple relationships between electron beam characteristics and far field prop-
erties of the light beam.

Introduction

Synchrotron Radiation (SR)1,2,3 has been widely used since the 80’s as a tool for many applications of UV, soft
X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards
higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size
and divergence), and the development of special source magnetic structures, as undulators. This means that more
and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is
the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the
temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even
without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X
ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry,
microscopy, holography, correlation spectroscopy, etc.4,5,6,7,8,9,10. In view of these recent possibilities and applications,
it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In
particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple
operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian
approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the
estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.

I. SPATIAL COHERENCE (SC)

First let us remind some concepts and define some symbols about SC of a quasi-monochromatic field in general. If
we have paraxial propagation of a random electromagnetic field f(p) (where p = (x, y) is a point in the transverse
plane) along a direction z, the filed f(p)n at z = 0 propagates in the Fresnel approximation

fz(p) =
1

(λz)2

∫

f0(p0) e−
ik

z
(p−p

0
)2 d2p , (1)

and in the Far Field (FF) (Fraunhofer region), where most observations are done, we have

f̃(k) = Fp→kf(p) =
1√
2π

∫

f(p) eik·p d2p (2)

where we have dropped the index 0 and indicated with Fp→k the Fourier transform operator from p to k domain.
Here we use as a variable the transverse component of the wavevector k = (kx, ky), the observation angle is then

θ = k
λ

2π
, (3)

According to eq. (2), angles are expressed in terms of reciprocal space coordinates, as is natural in diffraction optics.
“Second-order” statistical properties of the field are described by the “mutual intensity” (m.i.) (see11), i.e. the

ensemble average of the products of fields at two points.
It is convenient to express the m.i. as a function of the average and difference coordinates: p1 = p − ∆p/2,

p2 = p + ∆p/2 and, in reciprocal space, k1 = k − ∆k/2, k2 = k + ∆k/2

Mf(p,∆p) = 〈f∗(p − ∆p/2)f(p + ∆p/2〉 (4)



2

For simplicity we will also use these symbols:

If(p) = Mf(p, 0)

the intensity and

Cf(∆p) =

∫

Mf(p,∆p)d2p

the (integrated) autocorrelation. The degree of (spatial) coherence is defined as

µf(p,∆p) ≡ Mf(p,∆p)/
√

I(p − ∆p/2)I(p + ∆p/2) (5)

The Fresnel propagation of the m.i. can be expressed as:

Mfz(p̄,∆p̄) =
1

(λz)2

∫

Mf0(p,∆p)ei k

z
(p̄−p)(∆p̄−∆p)d2p d2∆p (6)

and in the FF

〈

f̃(k − ∆k
2 )f̃(k + ∆k

2 )
〉

=

∫

Mf(p, ∆p

2 )eip·∆k+k·∆pd2p d2∆p (7)

or, with our simplified notation,

Mf̃(k,∆k) = Fp→∆kF∆p→kMf(p,∆p) .

From this, two useful reciprocity relations connecting source and FF intensity/coherence properties can be derived12,13:

FCf(k) = IFf(k) (8)

FIf(∆k) = CFf(∆k) (9)

and reciprocal ones interchanging source and FF. Properties of non-stationary random functions can also be described
by the Wigner function (WF) (which is a photon number distribution in phase space, if divided by h̄ω)14,15,16 :

Wf(p,k) =

∫

〈f(p − ∆p/2)f∗(p + ∆p/2)〉 ei∆p·kd2∆p

=

∫

〈

f̃(k − ∆k/2)f̃∗(k + k/2)
〉

ei∆k·pd2∆k (10)

In fact from the definition we see that Fourier-transforming the WF with respect to k one gets the m.i. of f(x),

while transforming with respect to x gives the m.i. of f̃(k). We also remind that the intensity at the object plane

If =
∫

Wfdk and in the far field If̃ =
∫

Wfdx.
An equivalent description, with essentially the same characteristics, could be obtained with the Ambiguity function18

Af(∆p,∆k) =

∫

< f(p − ∆p/2)f∗(p + ∆p/2) > eip·∆k d2p (11)

Both Wigner and Ambiguity functions are real (almost always positive) functions and can be considered as a phase
space energy density: notice that this phase space area is dimensionless. Wf propagates in the same way of the
“radiance” (or “brightness”) of geometrical optics:

Wfz(p,k) = Wf0(p − k

k
z,k) , (12)

and the same for Afz(∆p,∆k).
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A. Gaussian approximation

A gaussian model (also called a gaussian Schell model19) of a partially coherent field has a radiance which has a
4-D gaussian distribution in phase space. From now on let us for simplicity consider one transverse dimension, say x
(and kx will be called k for short): we have then [ Wf or Af ] of the form (using our previous symbols):

Wf(x, k) = N1 exp
(

− 1
2

x2

σ2

I

)

exp
(

− 1
2

k2

s2

I

)

(13)

the MI is then

Mf(x,∆x) = N2 exp
(

− 1
2

x2

σ2

I

)

exp
(

− 1
2

∆x2

σ2

M

)

(14)

where

σM =
1

sI
(15)

(in agreement with eq. 8), if we define σM as the width of Cf(∆x). Here we have indicated with N the normalisation
constants)

This MI clearly satisfies separability between x and ∆x (Walther’s condition16). When σM ≪ σI we have the
“quasi-homogeneous” approximation (Mf(x,∆x) = If(x)µf(∆x)), and the factor function of x has the meaning of
the intensity17.

We easily see that this model satisfies the Schell condition (that’s why it is also called “gaussian Schell” model)
that the degree of coherence depends only on the separation between two points ∆x) : eq. 14 can be written:

Mf(x,∆x) = N exp

{

− 1
2

(x − ∆x/2)2

2σ2
I

}

exp

{

− 1
2

(x + ∆x/2)2

2σ2
I

}

exp

{

− 1
2

∆x2

σ2
µ

}

(16)

where

1

σ2
µ

=
1

σ2
M

− 1

4σ2
I

(17)

In particular, we see that for a perfectly coherent gaussian beam, σM = 2σI . The Schell and Walther conditions are
satisfied simultaneously only for a plane wave and gaussian wave: writing the two conditions,

[

If
(

x + ∆x
2

)

If
(

x − ∆x
2

)]
1

2 µf(∆x) = Mf (x,∆x) = If (x) mf(∆x) (18)

If we apply the logarithm and call h(∆x) = log[µf(∆x)/mf(∆x)], L(x) = log[If(x)] Eq. 18 becomes:

2L(x) − L
(

x + ∆x
2

)

− L
(

x − ∆x
2

)

= 2h(∆x)

By Taylor expanding L we see that in order for the left term to be dependent only on ∆x, terms higher than 2 must
be 0, i.e. a Gaussian, exponential or flat intensity only.

II. MUTUAL INTENSITY OF SYNCHROTRON RADIATION

A characteristic of SR is that it is the random superposition of a large number of rather collimated elementary waves
emitted by each electron of the beam14,15,20. Let us call ã(k) the well-known far-field amplitude (or square root of the
intensity) emitted by a single electron. It can be seen as the FT of the amplitude at the source a(p), which of course
is not a Dirac delta because of the diffraction corresponding to the limited angular aperture (and this is a limit to
the possibility of localizing an electron by observing or imaging the emitted SR). The electron beam is characterized
by a transverse spatial distribution g(p) and an angular distribution γ(k), which are to a good approximation both
gaussian. The ratio of the beam size and angular aperture is called the beta function and it is known from the machine
physics. Usually the source is in a place where position and angular distribution are uncorrelated; otherwise it is
possible to define an effective source position at the “waist” point where the two distibutions are uncorrelated. The
“waist” points may be different for the vertical and the horizontal distributions.
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We will consider for simplicity one transverse coordinate, say x and k. The superposition of all elementary contri-
butions can be best described in phase space, where the Wigner function (or Ambiguity function) can be obtained by
a convolution of the two distributions (electron, and single-electron light)14,15.

Wf(x, k) = g(x)γ(k) ∗ ∗Wa(x, k) (19)

where ∗∗ indicated the convolution with respect to both variables. The source and FF mutual intensities are then21:

Mf(x,∆x) = γ̃(∆x)[g(x) ∗ Ma(x,∆x)] (20)

and

Mf̃(k,∆k) = g̃(∆k)[γ(k) ∗ Mã(k,∆k)] (21)

In particular, for the FF intensity:

If̃(k) = γ(k) ∗ Iã(k) (22)

In order to give estimates of sizes and correlation distances of SR, it is useful to use a gaussian approximation for
the SR distributions a(x) and ã(k). Actually they are not gaussians, but this approximation is rather good for two
reasons: g(x) and γ(k) being gaussians, the convolution is close to a gaussian, except on the tails (as a(x) has long
tails), and the part that is used is just the central one.

With this gaussian approximation, the source and FF are characterised by 6 gaussian widths.
Let us call σI the characteristic width of the intensity (so that I(x) = exp(−x2/2σ2)) at the source, and sI the FF

intensity width. The M.I. of the source is given by eq. 14
As we have seen (eq. 14), the degree of coherence µf(x) has a width which is related to the other two widths by:

1

σ2
µ

=
1

σ2
M

− 1

4σ2
I

(23)

And analogously, if we use s for the FF widths:

1

s2
µ

=
1

s2
M

− 1

4s2
I

(24)

On the other hand, if we apply the reciprocity relations (Eq. 8, 9 ) to the gaussian case, we have:

sM =
1

σI
, and sI =

1

σM
(25)

This is illustrated in fig 1

σI

σM

sI

sM

σI

σM

sI

sM

FIG. 1: Illustration of the source - far field reciprocity relations (eq. 25), note that in the gaussian case the ratio between
beam width and coherence width is the same in the near field and far field (as well as in all sections in between20)
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We want now to correlate these widths with the electron and SR characteristics. We approximate the single-electron
FF amplitude with

ã(k) = exp

(

− k2

4ρ2

)

(26)

In this way we have defined ρ as the gaussian width of the FF intensity. The angular width ρ is of the order of the
relativistic factor of the electrons (multiplied by 2π/λ, in our reciprocal space units)9,22,23

If we also apply to the gaussian case eqs. 19, we get

s2
I = s2

e + ρ2, and σ2
I = σ2

e + 1/4ρ2 (27)

Putting together these relations, we can eventually determine the intensity and coherence properties of the FF as a
function of electron beam (and single-electron radiation) data:

sI = (s2
e + ρ2)1/2 , sM = (σ2

e + 1/4ρ2)−1/2

sµ =

(

σ2
e +

1

4ρ2
− 1

4(s2
e + ρ2)

)

−1/2

(28)

In the perfectly coherent limit (se << 1/ρ and se << ρ) we have sµ = ∞, sI = ρ and sM = ρ. The quasi-
homogeneous case is when se >> ρ and σe >> 1/ρ: in this case

sµ = (σ2
e + 1/4ρ2)−1/2 ≃ 1/σe (29)

This result coincides with the VanCittert-Zernike theorem, valid in the limit of a completely incoherent source. In
general, however (for a rather coherent beam, that is a beam produced by an electron beam with small σe and se),
the VanCittert-Zernike theorem needs a correction21.

It may also be of interest to know the resolution for imaging the source on the basis of FF intensity and coherence
measurements. In principle, we can get both σe and se by measuring sI and sM or sµ: from the previous equations
we see that from eq 27 we get

s2
e = s2

I − ρ2 ,

σ2
e = 1/s2

M − 1/4ρ2 . (30)

However in practice the low precision of correlation measurement with the unfavorable propagation of errors, makes
the method usable only if 4ρ2/s2

M −1 and s2
I/ρ2 −1 are not much smaller than one, i.e. the beam is not much smaller

than the diffraction limit).
In these remarks we have considered always a quasi-monochromatic component of the field; in other words we

imagine the light to be filtered before by a monochromator. It may be worthwhile to mention that SR, and in
particular the radiation from undulators, is not “cross-spectrally pure” as defined by Mandel24, as the spectrum
depends on angle, and then the spatial coherence and spectral characteristics cannot be separated, a subject that has
not yet been analysed in the literature.

III. EFFECTS OF QUALITY OF OPTICAL ELEMENTS.

In recent machines where spatial coherence becomes appreciable over a fraction of the photon beam width, or
in other words is very well collimated (near the diffraction limit), the effect of imperfection of optical elements, as
mirrors25,26 or Berillium windows27 strongly influences the beam quality. For mirrors, if the rms slope error is ς, this
must be compared with θcoh = λsµ/2π: in order to have small distortions we should have ς << θcoh For windows, a
uniform illumination will become non-uniform, with a contrast

C = 2πh/λ(n − 1)

.
Some authors have called this degradation of beam quality a “reduction of coherence”27,28. Actually this is not

precise29, as the speckle-like field produced by a random deflection from a rough surface (or refraction from a rough
window) is still capable of producing interference fringes in a Young experiment if the original wave was spatially
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coherent. In fact, the optical path (as a function of x,y) is fixed in time, it is a single realization of a random function,
in other words a deterministic function (although not known in detail). We have to distinguish averages in time from
averages over an ensemble of optical elements with similar statistical properties. The measure of correlation distance
is given by σµ or sµ, not by σM or sM , as the latter ones maybe short, for example, in a perfectly coherent light with
strong and rapid spatial variations of intensity.

In other words, coherent light stays coherent, even after passing through a random media. The photons in a coherent
volume in phase space never mix with others as a consequence of the Liouville theorem. However when we perform
a measurement, we normally measure projections (intensity) or slices (interferometry) in phase space. In the case of
a Young’s slits experiment for example, the two slits act as slices in the phase space, the beams diffracted from the
slits have lost directionality, and different volumes in phase space are therefore mixed. In a intensity interferometry
experiment, we integrate the phase space distribution over the angles30.

Free space
propagationRandom 

phase

Coherent volumes slits

kx

x

FIG. 2: propagation of the wigner function: (top) a gauss-shell beam propagates in free space, and a coherent volume is selected
by two slits. (bottom) the same beam after passing through a random phase object

IV. MEASUREMENTS

The first soft x-ray interferometric measurements with synchrotron radiation were performed by Polack et al31 using
two mirrors with an angle between them of 2.25 arcmin at 60 grazing angle. Coherence measurements using Young
slits have been performed by many groups in the soft X-ray range32,33,34,35. Takayama used a young-slit experiment
to characterize the emittance of the electron beam36.

In the hard x-ray the first interferometric measurement of the beam coherence was performed using two mirrors at
grazing incidence acting as slits37,38,39 (Fig. 3). Normal slits have also been applied40.

Other measurements of coherence have been performed by diffracting x-rays from a wire41,42, using Talbot effect43,
a mask of coded apertures called a uniformly redundant array (URA)44. Other techniques include using nuclear
resonance from a rotating disk and measuring the spatial coherence in the time domain (the rotating disk acts as
a ’prism’ of increasing angle)45, and intensity interferometry46. The latter has been used to measure the spatial as
well as longitudinal coherence47 and characterize the 3 dimensional x-ray pulse widths. Variation of the visibility of
a speckle pattern can also be used as an indication of the coherence width48.
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FIG. 3: experimental setup used to perform hard x-ray interferometric characterization of the coherence. By moving D or
changing the angle of incidence, or the height h of one mirror one can study the vertical coherence, while by tilting one mirror
it is possible to study the horizontal coherence38.
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20 R. Cöısson, S. Marchesini, Gauss-Shell sources as model for Synchrotron Radiation, Journal of Synchrotron Radiation 4(5),

1997, 263-266.
21 R. Cöısson, “Spatial coherence of synchrotron radiation”, Appl. Opt. 34, 904-8 (1995)
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25 R.Cöısson, “Estimation of the effect of slope errors on soft X-ray optics”, report TSRP-IUS-1-87, Trieste 1987.
26 Y. Wang et al., “Effect of surface roughness of optical elements on spatial coherence of X-ray beams from third generation

SR sources”, Acta Optica Sinica 20, 553-559 (2000)
27 A. Snigirev, I. Snigireva, V. G. Kohn, S. M. Kuznetsov, “On the requirements to the instrumentation for the new generation

of the synchrotron sources: berillium windows”, Nucl. Instrum.& Meth. A, 370, pp 634-640 (1996) On the requirements to
the instrumentation for the new generation of the radiation sources. Beryllium windows

28 A. Snigirev, I. Snigereva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging
by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5846-5492 (1995).

29 K. A. Nugent, C. Q. Tran, and A. Roberts, “Coherence transport through imperfect x-ray optical systems”, Optics Express
Vol. 11, No. 19, pp. 2323 - 2328 (2003).

30 I.A. Vartanyants and I.K. Robinson, Origins of decoherence in coherent X-ray diffraction experiments, Opt. Commun. 222,



8

29-50 (2003).
31 F. Polack, D. Joyeux, J. Svatos, and D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev.

Sci. Instrum. 66, 2180 (1995).
32 Takayama Y, Tai RZ, Hatano T, et al. Measurement of the coherence of synchrotron radiation J Synchrotron Radiat 5:

456-458 Part 3 MAY 1 1998
33 X.Xu et al., ”Experimental investigation of spatial coherence for soft X-ray beam in Hefei national SR facility”, Acta

Photonica Sinica 29, 29 (2000)
34 C. Chang et al., ”Spatial coherence characterization of undulator radiation”, Optics Comm. 182, 23-34 (2000)]
35 Paterson D, Allman BE, McMahon PJ, et al. Spatial coherence measurement of X-ray undulator radiation Opt Commun

195 (1-4): 79-84 Aug 1 2001
36 Y. Takayama, T. Hatano, T. Miyahara and W. Okamoto “Relationship Between Spatial Coherence of Synchrotron Radiation

and Emittance”, J. Synchrotron Rad. 5, 1187(1998).
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